INTERVALO DE CONFIANZA PARA UNA MEDIA Y DESV. ESTÁNDAR POBLACIONAL


Nivel de Confianza. Probabilidad de que la estimación efectuada se ajuste a la realidad. Cualquier información que queremos recoger está distribuida según una ley de probabilidad (Gauss o Student), así llamamos nivel de confianza a la probabilidad de que el intervalo construido en torno a un estadístico capte el verdadero valor del parámetro.

Error Muestral, de estimación o estándar. Es la diferencia entre un estadístico y su parámetro correspondiente. Es una medida de la variabilidad de las estimaciones de muestras repetidas en torno al valor de la población, nos da una noción clara de hasta dónde y con qué probabilidad una estimación basada en una muestra se aleja del valor que se hubiera obtenido por medio de un censo completo. Siempre se comete un error, pero la naturaleza de la investigación nos indicará hasta qué medida podemos cometerlo (los resultados se someten a error muestral e intervalos de confianza que varían muestra a muestra). Varía según se calcule al principio o al final. Un estadístico será más preciso en cuanto y tanto su error es más pequeño. Podríamos decir que es la desviación de la distribución muestral de un estadístico y su fiabilidad.



Varianza Poblacional
Cuando una población es más homogénea la varianza es menor y el número de entrevistas necesarias para construir un modelo reducido del universo, o de la población, será más pequeño. Generalmente es un valor desconocido y hay que estimarlo a partir de datos de estudios previos.


En el caso de poblaciones que no son normales, o que simplemente no sabemos si lo son o no, necesitamos que el tamaño de la muestra sea suficientemente grande (n > 30) para poder aplicar el Teorema central del límite para obtener que el intervalo de confianza para la media μ de una población con desviación típica conocida σ es:
ERROR ESTANDAR DE LA MEDIA
 σx= σ
       √n 
INTERVALOS DE CONFIANZA
X + Z * σx
X - Z * σx
VIDEO

No hay comentarios:

Publicar un comentario